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Abstract

In this paper, we seek to develop an efficient controller for vibration reduction in a small square plate clamped on all

edges. The plate mimics a piece of an aircraft’s skin. Small plate size results in higher natural frequencies than normally

investigated in literature. Such high-frequency systems are more susceptible to time delays. In addition, the control system

must be able to operate over a wide range of temperatures, a requirement for in-flight vibration suppression systems. We

investigate two methodologies (sliding mode control, and an adaptive H1 control) for control over a wide range of

temperatures. Theoretical and experimental studies are conducted and produced varying results. The best theoretical and

experimental results are obtained with the adaptive H1 controller.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustical fatigue in aircraft fuselage panels can be minimized when an aircraft is designed. With a proper
aerodynamic design, turbulent flow across the fuselage can be minimized. When an existing aircraft is
modified to serve another purpose, the airframe is often changed (such as adding a radar pod). The resulting
change can create turbulent airflow around the fuselage and acoustical fatigue becomes more of a concern.

This paper continues the work in Ref. [1] where an H1 controller using a distributed strain actuator was
able to suppress the vibrations in a thin (0.81mm) 152.4mm square aluminum plate. In this paper a thin
(1.2mm) 203.2mm square aluminum plate is studied and only the first three modes of vibration are
considered.

The first step was to investigate the variations in the dynamics of the plate and actuator due to temperature
changes. The temperature dependency of the system in an open-loop configuration was investigated. This was
performed by exciting a set of distributed strain actuators attached to the plate. A range of temperatures that
vary from �50 to 75 �C was considered.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Next, two control systems were developed to suppress vibrations over the temperature range: an adaptive
H1 controller, and a sliding mode controller. These controllers were developed to suppress the vibrations for
the first three modes.

Finally, the closed-loop system was tested from �25 to 50 �C. A positive velocity controller (PVF) was used
as a baseline for performance. The controllers were tuned at �25 �C because system noise has the greatest
effect at that temperature.

2. Plate modeling

The dynamics equation for a fully clamped plate is given as

D
q2W ðx; yÞ

qx4
þ 2

q4W ðx; yÞ

qx2y2
þ

q4W ðx; yÞ

qy4

� �
� rho2W ðx; yÞ ¼ 0. (1)

From Ref. [2], the displacement function of a clamped plate is

W ðx; yÞ ¼
XN

n¼1

xiW iðx; yÞ; i ¼ 1; . . . , (2)

where W iðx; yÞ is the coordinate function for the ith mode, and xi is the modal coefficient for the ith mode. The
coordinate functions for the first three modes are chosen as (see Ref. [3])

W 1ðx; yÞ ¼ ða1x4 þ b1x
2 þ 1Þða1y4 þ b1y2 þ 1Þ, (3a)

W 2ðx; yÞ ¼ xða2x4 þ b2x2 þ 1Þða2y4 þ b2y
2 þ 1Þ, (3b)

W 3ðx; yÞ ¼ yða3x4 þ b3x
2 þ 1Þða3y4 þ b3y2 þ 1Þ. (3c)

From the boundary conditions one can determine the coefficients ai and bi for a square plate with elastically
restrained edges as

a1 ¼
16ðaþ 2DfÞ
a4ðaþ 10DfÞ

; b1 ¼ �
8ðaþ 6DfÞ

a2ðaþ 10DfÞ
, (4a)

a2 ¼ a3 ¼
16ðaþ 6DfÞ
a4ðaþ 14DfÞ

; b2 ¼ b3 ¼ �
8ðaþ 10DfÞ
a2ðaþ 14DfÞ

, (4b)

where a ¼ b for a square plate.
Given the dynamics equation (1), and the coordinate functions (2), we can use Galerkin’s method to

solve for the natural frequencies in terms of the plates physical characteristics and boundary conditions
(see Ref. [4]). By experimentally measuring the first modal frequency of the 203.2mm square plate, f ¼
fx ¼ fy was determined to be 0.0014. The first three modal frequencies are shown in Table 1. xi is found by
normalizing the coordinate functions:Z a

2

�a
2

Z a
2

�a
2

rW mnðx; yÞW mnðx; yÞdxdy ¼ 1; n ¼ 1; 2; . . . . (5)

For the given plate, xi was found to be 10.45, 317.22, and 317.22 for the first three modes. Fig. 1 shows the
mode shapes for the first three modes.
Table 1

Eigenvalues and modal frequencies

n oi ci

1 1351.39 90

2 2872.80 100

3 2872.80 100
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Fig. 1. Mode shapes of a square plate clamped on all sides: (a) Mode 1, (b) Mode 2, (c) Mode 3.
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With the modal frequencies and shapes known, the forced vibration of the plate can be expressed as

€ZiðtÞ þ ci _ZiðtÞ þ o2
i ZiðtÞ ¼ NiðtÞ; i ¼ 1; 2; . . . . (6)

In the above equations NiðtÞ are the external forces, oi are the modal radial frequencies, and ci are the
damping coefficients (determined experimentally, see Section 3.1). Table 1 shows the values for the first
three modes.

The actuator used in this investigation is a distributed strain actuator (patch). The actuator is a thin layer of
piezoelectric material that is directly bonded to the plate. With an actuator bonded to the plate equation (6)
becomes

Z00i þ ci _Zi þ o2Zi ¼ givi, (7)

where gi is the actuator gain.

3. Adaptive control for model uncertainty

In this section, the effects caused by temperature and imperfect bonding of the patch to the plate are
investigated. These effects can cause significant error in the model if not accounted for.

3.1. Problem description

The model for the plate used in the control design assumes that the system is operating at room temperature
and that the piezoelectric material of the patch is perfectly bonded to the plate (see Eq. (6)). In reality, the
system needs to operate over a wide range of temperatures and the patch is not perfectly bonded. The two
effects cause the constant parameter g to vary in a nonlinear fashion.
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3.1.1. Imperfect bonding

The distributed strain actuator used in the system has a polyamide coating around the piezoelectric
material. This coating provides protection to the piezoelectric material, but prevents the material from being
bonded directly to the plate. As a result, the force g is reduced. In order to model this correctly, the material
properties of the polyamide would need to be known and a more complex model would need to be developed.
However, in this study an adaptive controller was implemented to account for the imperfect bonding effect.

3.1.2. Temperature effects

This system needs to be able to operate over a wide range of temperatures. High temperatures can be
present just after the aircraft takes off and low temperatures are present when the aircraft is in flight at high
altitudes. The piezoelectric material has a nonlinear dependence on temperature. As the temperature drops,
there is a slight drop in performance until 0 �C is reached. Further drops in temperature would dramatically
affect the performance of the actuator (as per manufactures specifications).

The polyamide coating of the distributed strain actuators offers another level of uncertainty. As the
temperature drops, the material hardens and creates a stiffer bond to the plate. This causes the actuator
performance to improve as the temperature drops, the opposite effect of piezoelectric material. The
combination of these two effects made the modeling of the actuator performance due to temperature effects
very difficult. Again, the adaptive controller was used to account for the variations instead of extensive
modeling of the polyamide material (something not possible because the material properties of the polyamide
were not available from the manufacturer).

3.2. Parameter identification

Since all of the uncertainties manifest in one parameter, a parameter identification method can be used. One
can safely assume that the parameter will vary slowly over time because the variation is due to temperature
changes. A least-squares method was used to compensate for noise in the system. This method is suitable
because it averages out measurement noise.

The design of the least-squares method is straightforward and adopted from Sastry and Bodson [5]. From
Eq. (7), the model of the system is

Z00i þ Ci _Zi þ o2Zi ¼ g�i vi, (8)

where g�i is the unknown actual actuator gain. In this approach the integral squared error is minimized,

ISE ¼

Z t

0

e21ðtÞdt, (9)

where the error ðeiÞ is defined as

ei ¼ giviðtÞ � g�i viðtÞ (10)

or

ei ¼ giviðtÞ � ðZ00i ðtÞ þ ci _ZiðtÞ þ o2ZiðtÞÞ. (11)

Defining yiðtÞ ¼ Z00i ðtÞ þ ci _ZiðtÞ þ o2ZiðtÞ, Eq. (11) becomes

ei ¼ giviðtÞ � yiðtÞ. (12)

The parameter gi can be determined by setting the derivative of the error with respect to gi to zero:

q
qgi

Z t

0

e2i ðtÞdt
� �

¼ 2

Z t

0

ðviðtÞðgiviðtÞ � yiðtÞÞÞdt ¼ 0. (13)

Therefore,

giðtÞ ¼

Z t

0

viðtÞ
2 dt

� ��1 Z t

0

viðtÞyiðtÞdt
� �

. (14)
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As long as persistent excitation exists, viðtÞ will not equal zero and

Z t

0

viðtÞ
2 dt

� ��1
! 0, (15)

therefore, gi will be bounded and approach g�i .
The system needs to be implemented in real time so a recursive formulation has to be developed [6]. Define

PiðtÞ ¼

Z t

0

viðtÞ
2 dt

� ��1
. (16)

Then

d

dt
ðPiðtÞ

�1
Þ ¼ viðtÞ

2. (17)

It can be shown that

0 ¼
d

dt
ðPiðtÞPiðtÞ

�1
Þ

¼
d

dt
ðPiðtÞÞPiðtÞ

�1
þ PiðtÞ

d

dt
ðPiðtÞ

�1
Þ. ð18Þ

Eq. (18) can be rewritten as

d

dt
ðPiðtÞÞ ¼ � PiðtÞ

2 d

dt
ðPiðtÞ

�1
Þ

¼ � PiðtÞ
2viðtÞ

2. ð19Þ

From Eqs. (14) and (16) it can be shown that

giðtÞ ¼ PiðtÞ

Z t

0

viðtÞyiðtÞdt
� �

. (20)

Thus,

d

dt
giðtÞ ¼

d

dt
PiðtÞ

Z t

0

viðtÞyiðtÞdt
� �

þ PiðtÞviðtÞyiðtÞ

¼ � PiðtÞ
2viðtÞ

2giðtÞPiðtÞ
�1
þ PiðtÞviðtÞyiðtÞ

¼ � PiðtÞviðtÞðgiðtÞviðtÞ � yiðtÞÞ. ð21Þ

To control the convergence rate of gi to g�i , a constant g40 is introduced. So,

_PiðtÞ ¼ �gPiðtÞ
2viðtÞ

2, (22)

_giðtÞ ¼ �gPiðtÞviðtÞðgiðtÞviðtÞ � yiðtÞÞ. (23)

As long as Pið0Þ40, the convergence scheme will be bounded.
The least-squares method is very good at noise rejection, however, it does not allow for the parameter to

vary over time because PiðtÞ ! 0, and stops gi from adapting. This can handle this in two ways: first, PiðtÞ can
be reset at specific times, for example when the temperature changes 5� and the second option is to add a
forgetting factor [6] in the form of

_PiðtÞ ¼ glaPiðtÞ � gPiðtÞ
2viðtÞ

2, (24)

where la40. The utility of each approach was studied in the testing phase.
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Table 2

Parameter values for the adaptive temperature test

Temp ð�CÞ Persistent excitation LSw/FF

15V 30V 15V w/noise 30V w/noise 30V w/noise

�50 9:3� 10�3 9:1� 10�3 9:0� 10�3 9:0� 10�3 10:1� 10�3

�36 10:9� 10�3 10:4� 10�3 10:6� 10�3 10:2� 10�3 11:1� 10�3

�22 11:9� 10�3 12:5� 10�3 11:8� 10�3 12:0� 10�3 11:9� 10�3

�12 14:6� 10�3 14:7� 10�3 14:1� 10�3 14:2� 10�3 13:9� 10�3

1 15:6� 10�3 16:1� 10�3 15:5� 10�3 15:7� 10�3 15:4� 10�3

2.5 15:3� 10�3 15:7� 10�3 15:0� 10�3 15:1� 10�3 NA

11.5 13:2� 10�3 14:0� 10�3 13:0� 10�3 12:7� 10�3 12:3� 10�3

13.5 12:9� 10�3 12:9� 10�3 12:7� 10�3 13:0� 10�3 NA

18.5 14:7� 10�3 15:3� 10�3 NA NA NA

22.5 12:7� 10�3 12:5� 10�3 NA NA NA

25 16:1� 10�3 16:1� 10�3 NA NA 15:9� 10�3

38.5 13:2� 10�3 13:2� 10�3 13:2� 10�3 13:6� 10�3 13:5� 10�3

50 14:0� 10�3 13:7� 10�3 13:7� 10�3 14:2� 10�3 14:5� 10�3

62 12:6� 10�3 12:7� 10�3 12:7� 10�3 12:9� 10�3 12:9� 10�3

75 12:7� 10�3 12:8� 10�3 12:9� 10�3 13:4� 10�3 13:4� 10�3

P. Shimon, Y. Hurmuzlu / Journal of Sound and Vibration 302 (2007) 409–424414
3.3. Implementation of the adaptive controller

In simulation, the adaptive controller was able to predict the parameter as long as there was a persistent
excitation. The simulations results are not presented because they do not add significantly to the content of the
article. The next step was to test the adaptive controller in the actual system (see Section 5 for the experimental
setup). The controller was implemented using the 152.4mm square plate and was tested over a wide range of
temperatures. The test was performed five times. The first four used the standard least-squares implementation
with four different persistent excitations. The patch was excited with either a 15 or 30V, 100Hz sine wave and
with or without noise applied in the form of air flow over the plate. The fifth test used the least-squares
algorithm with a forgetting factor (LSw/FF), persistently excited by a 30V, 100Hz sine wave with noise. In all
cases g ¼ 0:001 and in the fifth case, la ¼ 0:001. Table 2 shows the results of the test. The validity of the
tabulated results will be verified through controller performance.

4. Advance control design for three modes

In this section, two controllers are proposed, an H1 controller with adaptive parameter estimation and a
sliding mode controller. The controllers are designed to suppress the vibrations for the first four modes of an
203.2mm square plate. The H1 controller is a robust linear controller that can account for the uncertainties in
the model. To account for the temperature and bonding nonlinearities, an adaptive controller is added. This
controller effectively linearizes the system so that the linear H1 controller can be used. The sliding mode
controller is a nonlinear controller that will account for both model uncertainties and nonlinearities due to
bonding and temperature effects.

4.1. Problem description

There are three actuators being used to control the first three modes of vibration. See Fig. 2 for a picture of
the plate with actuator and accelerometer locations. The location of the actuators were chosen to minimize the
number of modes each actuator would excite. As a result the first actuator only affects the first mode,
the second and third actuators affect the second and first modes and third and first modes, respectively.
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With the locations of the actuators decided, Eq. (6) can be rewritten as

€ZðtÞ þ C _ZðtÞ þ OZðtÞ ¼ GYactV ðtÞ þD, (25)

where ZðtÞ ¼ ½Z1; Z2; Z3�
T, C is the experimentally determined damping co-efficient matrix of the plate and

C ¼ diagf90; 100; 100g; O is the natural frequency matrix and O ¼ diagfo2
1;o

2
2;o

2
3g; G is the 3 by 3 matrix of

actuator forces (see Ref. [1]) that will be defined below, Yact ¼ diagfyact1 ; yact2 ; yact3 g; V ðtÞ is the input voltage

vector to the three actuators given as V ðtÞ ¼ ½v1ðtÞ; v2ðtÞ; v3ðtÞ�
T, and the 3� 1 vector D is the external

disturbance. Here,

G ¼

0:130 0:0779 0:0779

0 �0:280 0

0 0 0:280

2
64

3
75. (26)

G shows that the first patch only affect the first mode, while the second and third patches affect there respective
modes as well as the first mode. The parameters yact1 ; yact2 , and yact3 are the unknown nonlinear parameters that
encompass the bonding, actuator and temperature uncertainties and estimated experimentally. The estimation
of the damping coefficients and the nonlinear parameters was done by injecting a sinusoid of known voltage
into each actuator and recording the resulting modal displacement and phase response.

The injection signal is swept over frequency to give an experimental frequency response of the system. Next
the frequency response of Eq. (25) is fit to this data using a simple least squares fit with Yact and C as the
independent variables. Fig. 3 depicts the results of the fitting procedure used to estimate Yact and C. In the
figure, the horizontal axis is the frequency ratio odr=oi where odr is the driving frequency. The vertical axis is
the ratio Ao2

dr=F where A is the amplitude of the response and F is the amplitude of the actuator input. The
values of the parameters Yact for the three actuators at room temperature were found to be 0.071, 0.054, and
0.052.

The actuator placement depicted in Fig. 2 causes the first mode to be affected by all actuators. However, in
the control design the effect of the second and third actuators on the first mode will be combined with the
noise disturbance. As a result of this assumption G becomes a diagonal matrix in the control design decoupling
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the three equations ðG ¼ diagfg1; g2; g3gÞ. The controllers need to be designed to handle the uncertainty in O
and C and the nonlinearity of Yact.
4.2. H1 and adaptive control for three modes

4.2.1. H1 control

The same design process that was used in Ref. [1] and adopted from Refs. [7,8] is used here. Eq. (25) can be
written in state-space form as

_X ¼ ApX þ B1pDþ B2pV , (27)

Y ¼ CpX þDpD, (28)

where X ¼ ½Z; _Z�T is the state vector, D is the disturbance. In addition the plant matrices are given by

A ¼
0 I

O C

� �
; B1p ¼

0

I

� �
; B2p ¼

0

G

� �
; Cp ¼ ½ 0 I �, (29)

where I is the 3� 3 identity matrix. Note that B2p does not include the nonlinear term Yact. The design of the
H1 controller requires a linear plant so Yact ¼ I .

The H1 design weights chosen to shape the three controllers are given in Table 3. Note that the weights
chosen for the second and third modes are the same. The block diagram for the design phase is given in Fig. 4.



ARTICLE IN PRESS

Table 3

Weights for the H1 controller

Mode W 1 W 2 W 3 W 4

1 10 5� 10�6 3� 105

7:16� 10�4sþ 1

7:46� 10�5sþ 0:3125

2:5� 10�8sþ 1
2,3 10 1:1� 10�4 6� 104

3:99� 10�4sþ 1

6:64� 10�6sþ 0:0625

2:5� 10�8sþ 1

(sI AP)−1 CPB2P

B1PW1

W2

W3

W4

H∞ Controller (K)

N

D Z1

Z2

H   ∞ Design Plant

−

Fig. 4. Block diagram for the design of the H1 controller.
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The controllers resulting from the design are linear and can be described by

_X i ¼ AiX i þ Biui; i ¼ 1; 2; 3, (30)

vi ¼ CiX i þDiui; i ¼ 1; 2; 3, (31)

where X i is the state of the controller, ui is the input to the controller (the velocity of each mode), vi is the
output voltage of the actuator, and Ai;Bi;Ci, and Di are matrices given by

A1 ¼

0:000; 1:555; 5:861� 104; 0

�1:361� 106; �3:446� 103; �2:156� 107; 5:211� 106

1:045� 101; 8:767� 10�3; �9:548� 102; 0

�5:054� 104; �2:427� 101; �2:348� 106; �2:010� 104

2
66664

3
77775, (32)

B1 ¼

�1:518� 105

9:201� 108

�2:399� 103

0

2
6664

3
7775, (33)

C1 ¼ ½�1:847� 10�1; �8:867� 10�5; �8:580; 1:461� 102�, (34)

D1 ¼ ½ 0 �, (35)
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A2;3 ¼

0:000; 1:054; 3:615� 104; 0

�6:837� 106; �7:316� 103; �2:457� 107; �1:121� 107

1:038� 101; 2:082� 10�3; �3:024� 103; 0

�1:440� 103; 3:625; 6:196� 104; �1:364� 104

2
66664

3
77775, (36)

B2;3 ¼

�6:220� 103

8:338� 108

�2:399� 102

0

2
6664

3
7775, (37)

C2;3 ¼ ½�1:249� 10�2; 3:146� 10�5; 5:376� 10�1; 3:470� 102�, (38)

D2;3 ¼ ½0�. (39)

Simulation of the numerical model results in significant amplitude reductions as shown in Fig. 5.
4.2.2. Adaptive control

Three adaptive controllers were designed using the adaptive algorithm given in Section 3. Depending on

which actuator is being excited, each controller will estimate yact1 ; yact2 , or yact3 to get yest1 ; y
est
2 , and yest3 . Again, the

second and third controllers will be identical. All of the controllers will use the first modal equation as their
reference model (each patch will excite the first mode). From Eq. (25),

€Z1ðtÞ þ c1 _Z1ðtÞ þ o2
1Z1ðtÞ ¼

1

0

0

2
64
3
75GYactV ðtÞ. (40)

Each controller excites the actuator with a 30V, 150Hz sinusoidal signal. For all the controllers, g ¼ 0:001.
In order to effectively use the H1 controller, the plant must be linearized to match the plant used in

its design (where Yact ¼ I). To do this, the H1 control voltage will be multiplied by the inverse of the
parameter estimation Yest. The right-hand side of Eq. (25) then becomes GYactYest�1V ðtÞ þD, where
Yest ¼ diagfyest1 ; y

est
2 ; and yest3 g. If the estimation is perfect the right-hand side becomes GV ðtÞ þD, which was

the plant used in the H1 control design.
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4.2.3. Simulation results

The controller was simulated on a system that closely matched the experimental setup, including the time
delay of the system. In addition, a controller sampling rate of 10 kHz was used in the simulation. Because of
the delays at higher frequencies ð42 kHzÞ, high-frequency dynamics were excited. As a result, the gains in the
simulations were reduced to prevent the excitation of the high-frequency dynamics. To better approximate the
experimental conditions, the adaptive controller was run separately from the H1 controller. The adaptive
parameter was estimated and applied to the voltage of the H1 controller. Fig. 6 shows the convergence of the
adaptive parameters. The frequency of the disturbance was swept from 100Hz to 1 kHz and the modal
positions were recorded. The controller reduced the vibrations by 10 dB for the first mode and 8.2 dB for the
second and third modes. Five additional simulations were run to test the range of the controller by varying Z

by �10%; C by �50% and 0:02 g1pgtest1 p0:05 g1; 0:01 g2pgtest2 p0:03 g2, and 0:01 g3pgtest3 p0:03 g3. The
second test maximized all three parameters. The third test set Z and C to their minimum values and G to its
maximum. The fourth test set Z and C to their nominal values and G to its minimum. Test five minimized all
three parameters. The final test maximized Z and C and minimized G. Fig. 7 shows the results of the
variations. The worst case reduction was 8.4 dB for the first mode and 7.3 dB for the second and third modes.
These resulted from a 10% increase in modal frequency and a 50% increase in damping.
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Fig. 6. Theoretical parameter convergence for the three distributed strain actuators. Solid curve for first actuator; dashed curve for the

second and third actuators.

1 2 3 4 5 6
0

5

10

15

Test

dB
 R

ed
uc

tio
n

Adaptive H∞

1 2 3 4 5 6
0

5

10

15
Sliding Mode

Test

dB
 R

ed
uc

tio
n

(a) (b)

Fig. 7. Modal reduction of the H1 and sliding mode controllers. Square markers for mode 1; diamond markers for modes 2 and 3. Test

conditions are: 1—nominal condition; 2—1:1om; 1:5Cm;max kf ; 3—0:9om; 0:5Cm;max kf ; 4—1:0om; 1:0Cm;min kf ; 5—0:9om; 0:5Cm;
min kf ; 6—1:1om; 1:5Cm;min kf . (a) Adaptive H1, (b) Sliding mode.
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4.3. Sliding mode control for three modes

4.3.1. Sliding mode control

The sliding mode controller is a transformation that reduces the system down to a first-order system, the
sliding surface. Controlling this first-order system is simpler than controlling the original plant. If this sliding
surface can be controlled, then the original system will be controlled.

From Ref. [6], Eq. (6) is rewritten as

€ZðtÞ ¼ f þ G�V , (41)

where f ¼ �C _Z � OZ. Also, the external forces can be expressed as ½N1;N2;N3�
T ¼ G�V , with

G� ¼ diagfg�1; g
�
2; g
�
3g. The uncertainties on C and

ffiffiffiffiffiffi
On

p
are estimated to be 50% and 10%, respectively. The

range of the components of G� are defined such that 0:02 g1pg�1p0:05 g1; 0:01 g2pg�2p0:03 g2, and
0:01 g3pg�3p0:03 g3. These limits were chosen based on experimental observation. Accordingly, the nominal
value of f ; f̂ , can be written as

f̂ ¼ �Ĉ _Z � ÔZ, (42)

where Ĉ and Ô are the nominal values of their respective matrices. Now, the estimation error, j f̂ � f j, can be
bound by some function ~f :

~f ¼ 0:5Cj _Zj þ 0:21OjZj. (43)

To suppress the vibration, the sliding surface s is defined as

s ¼ _Z þ LZ, (44)

where L ¼ diagfl1; l2; l3g, with li40. Then,

_s ¼ €Z þ L _Z ¼ f þ G�V þ L _Z. (45)

Vibration suppression is achieved when s! 0 and _s! 0. Bearing in mind that Eqs. (44) and (45) are
completely decoupled, the following condition can be set:

1

2

d

dt
s2i p�Njsij; i ¼ 1; 2; 3 (46)

or

si _sip�Njsij; i ¼ 1; 2; 3, (47)

for some N40.
Using Filippov’s construction [6] for the equivalent dynamics,

v̂i ¼ �f̂ i � li _Zi, (48)

where v̂i are the three components of the equivalent control vector. Thus, the control input is

vi ¼
v̂i

ĝi

�
ki

ĝi

sgnðsiÞ; i ¼ 1; 2; 3, (49)

where ĝi are the nominal values of gi (they will be specified below), K ¼ ½k1; k2; k3�
T is the control gain vector,

and sgnðsÞ is the signum function. Using Eqs. (45) and (47),

f i �
g�i
ĝi

f̂ i þ li _Zi �
g�i
ĝi

li _Zi �
g�i
ĝi

ki sgnðsiÞ

� �
sip�Njsij. (50)

Therefore,

kiX
g�i
ĝi

N �
g�i
ĝi

f i � f̂ i

� �
þ

g�i
ĝi

li � li

� �
_Zi. (51)
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Here, ĝi are chosen to be ĝi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðg�i Þmaxðg�i Þ

p
, such that

b�1i p
ĝi

g�i
pbi, (52)

where bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðg�i Þ=minðg�i Þ

p
. Given the bounds above, ki can be chosen to be

ki ¼ biN þ bi
~f i þ ðbi � 1Þlij_Zij. (53)

The design coefficients, li and N, are chosen to be 5 and 10, respectively.
To avoid chatter, the sliding mode controller can be modified such that the signum function in Eq. (49) is

replaced with a saturation function of the form

Sat
si

F

� �
¼

1; if si4F;

�1; if sio� F;

si; otherwise:

8><
>: (54)

Eq. (49) then becomes

vi ¼
v̂i

ĝi

�
ki

ĝi

SatðsiÞ; i ¼ 1; 2; 3. (55)

For simulation and experimental studies, F was chosen to be 0.001.

4.3.2. Simulation results

The sliding mode controller was tested in the same way as the H1 controller. The frequency of the
disturbance was swept from 100Hz to 1 kHz and the modal positions were recorded. The controller reduced
the vibrations by 10 dB for the first mode and 8.2 dB for the second and third modes. Next, O;C and G were
varied to test the range of the controller. Fig. 7(b) shows the results of the tests. The worst case reduction was
5.5 dB for the first mode and 3.4 dB for the second and third modes. These resulted from a 10% increase in
modal frequency, a 50% increase in damping, and using the minimum values of g (the weakest actuator).

5. Experimental results

The experimental setup is based on a 150MHz floating point DSP, the TI6711. The disturbance to the plate
was generated by a speaker over the plate. The acceleration at four locations on the plate were measured. The
acceleration was sent through a 8 kHz second-order butterworth filter to remove aliasing effects by the analog-
to-digital converters (ADCs). The signals were then sent through the ADCs to the DSP. The actuator voltage
was sent out of the DSP through DACs, amplified and then sent to the distributed strain actuators. The
speaker and plate are enclosed in a Thermotron temperature chamber that allows for controlled temperature
tests. The experimental setup is shown in Figs. 8 and 9.

Since the controls use modal acceleration, velocity and position in their calculations, this information must
be calculated from the measured plate accelerations. Assuming only the first four modes are present
(we assume the fourth mode is present but uncontrolled) the modal acceleration can be extracted from
the measured acceleration by evaluating the coordinate functions, Eq. (3) at the specific locations where the
accelerometers are located. The coordinate function for the fourth mode can be found in Ref. [1]. The
coordinate functions can then be solved given the positions of the accelerometers in the experimental setup.
Each accelerometer measurement is made up of the four modal accelerations. Solving for the four model
accelerations, we get

€Z1 ¼ 0:0557a1 þ 0:0717a2 þ 0:0717a3 � 0:0557a4, (56)

€Z2 ¼ �0:0374a1 þ 0:0482a2 � 0:0482a3 þ 0:0374a4, (57)
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Fig. 9. Electronic hardware for control of three modes.

Fig. 8. Plate with detecting and actuation hardware. Note patches P4 and P5 are not used in these experiments.
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€Z3 ¼ 0:0374a1 þ 0:0482a2 � 0:0482a3 � 0:0374a4, (58)

€Z4 ¼ �0:0242a1 þ 0:0334a2 þ 0:0334a3 � 0:0761a4, (59)

where ai are the measured accelerations of the plate (see Fig. 2).
When testing the H1 controller, the adaptive parameter estimator was run first. The adaptive parameter

found was fed into the H1 controller and its gain adjusted. Fig. 10 depicts the adaptive parameter
convergence for test 1 (the behavior is qualitatively similar for all tests). This data was taken at room
temperature. When compared with the model, the parameter convergence was virtually identical.
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Fig. 10. Experimental parameter convergence for the first three distributed strain actuators. Dotted line for parameter 1; solid lines for
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Fig. 11. Experimental vibration suppression of the three controllers. Solid line with circular markers for PVF; dashed line with square

markers for H1; dotted line with diamond markers for sliding mode. (a) Mode 1, (b) Mode 2, (c) Mode 3.
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The experimental results for the H1 controller with the adaptive parameter identification and the sliding
mode controller are compared with a baseline positive velocity feedback controller. The controllers were tuned
at the lowest temperatures because high-frequency noise had the greatest effect at low temperatures.
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A sinusoidal disturbance was swept from 100Hz to 1 kHz and the corresponding modal positions were
recorded for the three controllers and for open-loop condition. The positive velocity feedback performed the
worst of the three controllers. Its performance degraded over the temperature range, with significant
performance loss at the high temperatures. The sliding mode controller performed better, but still degraded at
higher temperatures. The H1 controller with the adaptive estimator was fairly consistent over temperature
changes and had minor degradation at high temperatures. The reductions at the three modal frequencies are
shown in Fig. 11.

6. Conclusions

In this paper, vibration suppression of a small square plate clamped on all edges was considered. Two
control designs (H1 and sliding mode control) were presented to account for both model uncertainties and
nonlinear effects due to temperature variations, bonding issues, and the actuator coating. These control
methods were able to significantly reduce the vibrations over a wide range of tests. The H1 controller with the
parameter estimation performed better across variations of the plant. However, that performance comes with
a higher computational cost and a need to inject a signal into the actuator voltage periodically (for persistent
excitation). The experimental results were not as good as the theoretical results because the gain of the
controllers had to be reduced to prevent saturation of the accelerometers. Saturation due to high-frequency
noise and the digitizing effects of the DAC were not accurately modelled. The delay of the system was
approximately 0.23ms. This corresponds to 180� phase shift at 2.2 kHz. If high-frequency noise is excited at
2.2 kHz, it will be amplified. A small displacement will correspond to a large acceleration, saturating the
accelerometers. This was seen in experiments and the gain had to be reduced to prevent this. The degradation
in performance between the ideal system and the actual system was not seen in other research because the time
delay of controlled systems below 75Hz is negligible. The experimental issues of controlling a higher-
frequency system become more complex and have a greater effect on the system. Although some possible
improvements can be taken (such as using parallel DSPs for each controller), time delay will continue to be a
factor in the performance.

Acknowledgements

The authors would like to thank Raytheon Aircraft Integration Systems for partial funding of this research.
References

[1] P. Shimon, E. Richer, Y. Hurmuzlu, Theoretical and experimental study of efficient control of vibrations in a clamped square plate,

Journal of Sound and Vibration 282 (2005) 453–473.

[2] L. Meirovitch, Principles and Techniques of Vibrations, Prentice-Hall, Inc., Upper Saddle River, NJ, 1997.

[3] E. Richer, Using Innovative Control Algorithms for Better Design of Force Actuators, PhD Dissertation, Southern Methodist

University, 1999.

[4] A. Dimarogonas, Vibrations for Engineers, Prentice-Hall, Inc., Upper Saddle River, NJ, 1996.

[5] S. Sastry, M. Bodson, Adaptive Control: Stability, Convergence, and Robustness, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[6] J.-J. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall, Inc., Upper Saddle River, NJ, 1991.

[7] R.T. Stefani, C.J. Savant Jr., B. Shahian, G.H. Hostetter, Design of Feedback Control Systems, Saunders College Publishing, Orlando,

FL, 1994.

[8] K. Zhou, J.C. Doyle, Essentials of Robust Control, Prentice-Hall, Inc., Upper Saddle River, NJ, 1998.


	A theoretical and experimental study of advanced control methods to suppress vibrations in a small square plate subject �to temperature variations
	Introduction
	Plate modeling
	Adaptive control for model uncertainty
	Problem description
	Imperfect bonding
	Temperature effects

	Parameter identification
	Implementation of the adaptive controller

	Advance control design for three modes
	Problem description
	H  and adaptive control for three modes
	H  control
	Adaptive control
	Simulation results

	Sliding mode control for three modes
	Sliding mode control
	Simulation results


	Experimental results
	Conclusions
	Acknowledgements
	References


